Metabolic acidosis: Difference between revisions
| Line 39: | Line 39: | ||
#Treat source | #Treat source | ||
#Correct any respiratory acidosis | #Correct any respiratory acidosis | ||
#Each bicarb 0.5mEq/kg causes 1 meq/L rise in HCO3 | #Bicarbonate | ||
##Each bicarb 0.5mEq/kg causes 1 meq/L rise in HCO3 | |||
##Consider for: | |||
#Bicarb <4 | ###Bicarb <4 | ||
#pH <7.20 | ###pH <7.20 AND shock/myocardial irritability | ||
#Severe hyperchloremic acidemia | ###Severe hyperchloremic acidemia | ||
##Lost bicarbonate would take days to replenish | ####Lost bicarbonate would take days to replenish | ||
== Source == | == Source == | ||
Revision as of 09:27, 14 May 2011
Background
- Always determine whether there is a primary respiratory acidosis as well
- PCO2 (expected) = (1.5 x [HCO3–] + 8) ± 2
- In acute setting PCO2 should fall by 1 mmHg for every 1 mEq fall in HCO3
DDX
Gap
- Lactic acidosis
- Sepsis, shock, liver dz, CO, CN, metformin, methemoglobin
- Renal failure
- Uremia
- Ketoacidosis
- DKA, AKA, starvation
- Ingestions
- Inc osm gap
- Methanol, ethylene glycol
- Nl osm gap
- Salicylates
- Inc osm gap
Non-gap
- Hyperkalemia
- Resolving DKA
- Early uremic acidosis
- Early obstructive uropathy
- RTA Type IV
- Hypoaldo
- K-sparing diuretics
- Hypokalemia
- RTA Type I
- RTA Type II
- Acetazolamide
- Acute diarrhea
- (May be assoc with gap if hypoperfusion -> lactic acidosis)
Treatment
- Treat source
- Correct any respiratory acidosis
- Bicarbonate
- Each bicarb 0.5mEq/kg causes 1 meq/L rise in HCO3
- Consider for:
- Bicarb <4
- pH <7.20 AND shock/myocardial irritability
- Severe hyperchloremic acidemia
- Lost bicarbonate would take days to replenish
Source
Tintinalli
